Telegram Group & Telegram Channel
Forwarded from Machinelearning
🌟 NeMo-Inspector: продвинутый анализ генерации языковых моделей.

NeMo-Inspector от NVIDIA — это инструмент, который превращает анализ генераций из рутины в осмысленный процесс. Он не просто показывает результаты, а помогает их систематизировать, сравнивать и даже чистить данные.

NeMo-Inspector не просто просмотрщик логов. Это полноценная среда, где можно менять промпты на лету, маркировать проблемные данные и проверять гипотезы.

Для инженеров, которые хотят не просто получать ответы от LLM, но и понимать, как они рождаются, NeMo-Inspector мастхэв. Он не даст магии, зато сэкономит часы ручного разбора и поможет найти слабые места даже в сложных пайплайнах, а поддержка Markdown, LaTeX и подсветки синтаксиса сделает работу с математическими задачами или кодом менее муторной.

▶️NeMo-Inspector работает в двух режимах: 

🟢Inference Page позволяет экспериментировать с промптами в реальном времени. Вы можете писать запросы вручную или использовать шаблоны с плейсхолдерами: например, подставлять разные задачи в структуру «Проблема: {вопрос}; Решение: {ответ}». Это удобно, когда нужно тестировать гипотезы без постоянной перезагрузки модели.

🟢Analyze Page заточен под глубокий разбор уже сгенерированных данных. Загрузите JSON-файлы и инструмент покажет выборки в читаемом формате с подсветкой кода и формул.

Гибкость проводимого анализа - особенность NeMo-Inspector. Вы можете сравнивать, как одна модель справляется с разными параметрами (температура, top_p) или как разные модели решают одну задачу. Допустим, проверяете, повышает ли CoT точность ответов. NeMo-Inspector выведет результаты бок о бок, а еще посчитает статистику: доля правильных ответов, «уверенность» модели (persistence) или кастомные метрики, которые можно задать самостоятельно через Python-функции.

Из практических кейсов: NeMo-Inspector помог «почистить» синтетический датасет GSM-Plus, где 46,99% данных оказались проблемными (в некоторых вопросах было по два знака вопроса — модель путалась, на какой отвечать). В проекте с OpenMath-Mistral-7B выяснилось, что 26% ошибок связаны с падением качества сгенерированного кода. После доработки датасета точность модели выросла на 4,17%.


📌Лицензирование: Apache 2.0 License.


🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #NeMoInspector #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/opendatascience/2291
Create:
Last Update:

🌟 NeMo-Inspector: продвинутый анализ генерации языковых моделей.

NeMo-Inspector от NVIDIA — это инструмент, который превращает анализ генераций из рутины в осмысленный процесс. Он не просто показывает результаты, а помогает их систематизировать, сравнивать и даже чистить данные.

NeMo-Inspector не просто просмотрщик логов. Это полноценная среда, где можно менять промпты на лету, маркировать проблемные данные и проверять гипотезы.

Для инженеров, которые хотят не просто получать ответы от LLM, но и понимать, как они рождаются, NeMo-Inspector мастхэв. Он не даст магии, зато сэкономит часы ручного разбора и поможет найти слабые места даже в сложных пайплайнах, а поддержка Markdown, LaTeX и подсветки синтаксиса сделает работу с математическими задачами или кодом менее муторной.

▶️NeMo-Inspector работает в двух режимах: 

🟢Inference Page позволяет экспериментировать с промптами в реальном времени. Вы можете писать запросы вручную или использовать шаблоны с плейсхолдерами: например, подставлять разные задачи в структуру «Проблема: {вопрос}; Решение: {ответ}». Это удобно, когда нужно тестировать гипотезы без постоянной перезагрузки модели.

🟢Analyze Page заточен под глубокий разбор уже сгенерированных данных. Загрузите JSON-файлы и инструмент покажет выборки в читаемом формате с подсветкой кода и формул.

Гибкость проводимого анализа - особенность NeMo-Inspector. Вы можете сравнивать, как одна модель справляется с разными параметрами (температура, top_p) или как разные модели решают одну задачу. Допустим, проверяете, повышает ли CoT точность ответов. NeMo-Inspector выведет результаты бок о бок, а еще посчитает статистику: доля правильных ответов, «уверенность» модели (persistence) или кастомные метрики, которые можно задать самостоятельно через Python-функции.

Из практических кейсов: NeMo-Inspector помог «почистить» синтетический датасет GSM-Plus, где 46,99% данных оказались проблемными (в некоторых вопросах было по два знака вопроса — модель путалась, на какой отвечать). В проекте с OpenMath-Mistral-7B выяснилось, что 26% ошибок связаны с падением качества сгенерированного кода. После доработки датасета точность модели выросла на 4,17%.


📌Лицензирование: Apache 2.0 License.


🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #NeMoInspector #NVIDIA

BY Data Science by ODS.ai 🦜





Share with your friend now:
tg-me.com/opendatascience/2291

View MORE
Open in Telegram


Data Science by ODS ai 🦜 Telegram | DID YOU KNOW?

Date: |

Mr. Durov launched Telegram in late 2013 with his brother, Nikolai, just months before he was pushed out of VK, the Russian social-media platform he founded. Mr. Durov pitched his new app—funded with the proceeds from the VK sale—less as a business than as a way for people to send messages while avoiding government surveillance and censorship.

The messaging service and social-media platform owes creditors roughly $700 million by the end of April, according to people briefed on the company’s plans and loan documents viewed by The Wall Street Journal. At the same time, Telegram Group Inc. must cover rising equipment and bandwidth expenses because of its rapid growth, despite going years without attempting to generate revenue.

Data Science by ODS ai 🦜 from ua


Telegram Data Science by ODS.ai 🦜
FROM USA